• Packages add more capabilities to \LaTeX. Load them in the preamble (i.e. between `\documentclass{article}` and `\begin{document}`).

Example 1. Input:
```
\documentclass{article}
\usepackage{amsmath}
\begin{document}
The following command is defined in amsmath
$$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
$$
\end{document}
```

Output:
```
The following command is defined in amsmath
\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\]
```

• Here are a handful of the more common packages.

 ◦ `amsfonts`: AMS Fonts. Defines the fonts for things like Blackboard Bold and Fraktur.

 ◦ `amsthm`: AMS Theorem. Makes it easy for the user to create and control their own environments like `theorem`, `example`, `lemma`, `definition`, etc.

 ◦ `amssymb`: AMS Symbols. Defines more symbols.

 ◦ `amsrefs`: AMS References. Defines commands for easily entering bibliographic data.

 ◦ `fancyhdr`: Fancy Header. Defines commands for the user to create and control complicated headers and footers.

 ◦ `geometry`: (Page) Geometry. Allows the user to easily set the margins, text area, distances for headers and footers, etc.

 ◦ `graphics`: Graphics. Defines commands for including (external) graphics into a \LaTeX file.

 ◦ `setspace`: Set (Line) Spacing. Allows the user to make the document double-spaced or one-and-a-half spaced.

 ◦ `tikz`: Tikz. Allows the user to create simple pictures, within a \LaTeX document, with programming-type commands.

• If you define a new command, you should usually do this in the preamble.

Example 2. Input:
```
\documentclass{article}
\newcommand{\dydx}{\frac{dy}{dx}}
\begin{document}
If $y=x^2$ then $d y \over dx = 2x$.
\end{document}
```

Output:
```
If $y = x^2$ then $\frac{dy}{dx} = 2x$.
```

In this example, `\dydx` is the name of the new function being defined. Then `\{\frac{dy}{dx}\}` is what the function is defined as.

• Commands with inputs, i.e. arguments.

Example 3. Input:
```
\newcommand{\dd}[2]{\frac{d#1}{d#2}}
If $V=\pi r^2$ then $\dd V r = 2\pi r$.
```

Output:
```
If $V = \pi r^2$ then $\frac{dV}{dr} = 2\pi r$.
```

Here “[2]” represents the number of inputs that the function will have. These inputs are then represented by \#1 and \#2 in the definition.

• Changing commands. You can change commands that already exist. For instance
```
\renewcommand{\labelenumi}{\Roman{enumi}.}
```

will change an enumerate list to be in upper case Roman numerals.

• Fancier constructions can be useful too.

Example 4. Input:
```
\newcommand{\map}[4]%
\begin{array}{t}{rcl}
#1 & \longrightarrow & #2 \\
{#3} & \mapstochar \longrightarrow & #4
\end{array}
$f: \map{A}{B}{x}{x^2}$
```

Output:
```
$f: A \longrightarrow B$
\begin{array}{c}
x \mapsto x^2
\end{array}
```

• Environments. There is an analogue of `\newcommand` for environments too:
```
\newenvironment{foo}[n]{bar}{baz}
```

defines a new environment called `foo`. The number of arguments is \textit{n}. The \textit{definition} is broken into two parts: `bar` is what happens when you enter `\begin{foo}` and `baz` is what happens when you enter `\end{foo}`.