Here is a sampling of commands I’ve created in the context of classroom material. Some of them may be directly useful to you; others may help you imagine what’s possible and create your own. To see the actual definitions, look at the source code for this file.

- \circle

\[
\frac{\circle{31x^5+4x^2-10x+5}}{\circle{x^5}-2x^3+10,000}
\]

produces

\[
\frac{31x^5 + 4x^2 - 10x + 5}{x^5 - 2x^3 + 10,000}
\]

- \map

\[
f: \map{A}{B}{x}{x^2}
\]

- \define

The number \(m\) is called the \define{slope}, and \(y = mx + b\) is called a \define{linear equation}.

The number \(m\) is called the slope, and \(y = mx + b\) is called a linear equation.

As used, this makes two index entries: one equivalent to \index{slope} and one equivalent to \index{equation!linear}.

- \squigdownarrow

This makes a squiggly, downwards arrow like so

\[
\lim_{n \to \infty} \sum_{i=0}^{n} x^2 \Delta x
\]

- \chain

\[
\frac{d}{dx} \sqrt{4x^2 + x}
\]

\[
\frac{1}{2\sqrt{4x^2 + x}} \cdot (8x + 1)
\]

For more examples, try the following:

\[
\text{\begin{fpanel}\includegraphics[width=1.5in]{hypocycloid}}
\text{This is the graph of a hypocycloid. It was made in Maple, then I exported it as EPS, and then I included it here.}\text{\end{fpanel}}
\]

This is for making comic-book like panels, with text at the bottom. It has an argument for a picture (or some kind of box). The picture sets the width of the panel, and then the body of the environment contains the text, that will wrap below the panel.