Bisect an angle

Given an angle construct a line that bisects the angle.

Proof: Let \(\angle ABC \) be the given angle.

Draw a circle with center at \(B \) and radius shorter (or equal) to both \(AB \) and \(BC \). Let \(D \) and \(E \) be the intersections of this circle with \(AB \) and \(BC \). Draw circles with centers at \(D \) and \(E \) that have radius greater than \(DE \).

Let \(F \) be the intersection of these last two circles.

Claim: \(\angle BF \) bisects \(\angle ABC \).

Consider triangles \(\triangle BDF \) and \(\triangle BEF \). Note that \(BD = BE \) since both are radii of some circle. Note that \(DF = DE \) because the circles centered at \(D \) and \(E \) have the same radius. Of course \(BF = BF \) so \(\triangle BDF \cong \triangle BEF \) by SSS. Therefore \(\angle BDF = \angle EBF \).