Homework 9
Due April 15, 2020

1. Do ONE (and only one) of the problems (a) or (b) below. In both cases we assume that $X, A, B,$ and Y are points as needed in the definition of $d(A,B)$ in the Poincare Disc, in the order $X — A — B — Y$ (i.e. X is on the boundary of the circle; A is between X and B; B is between A and Y; and Y is on the boundary of the circle).

(a) With A, B any points as described above, show that $d(A,B) = 0$ if and only if $A = B$

Solution

Note that $X — A — B — Y$ (where “between” means along the circular arc). We claim that $\overline{AX} \leq \overline{BX}$, with equality $\iff A = B$.

Clearly, if $A = B$ then equality holds. Conversely, if $A \neq B$, then the Euclidean circle C with center at X and radius \overline{XA} intersects the arc $XABY$ in one place, namely at A. Since B is on the opposite side of A than X, we have that B is outside of C. Therefore, $\overline{AX} < \overline{BX}$.

Now we combine inequalities:

- $\overline{AX} \leq \overline{BX}$, (above)
- $\overline{BY} \leq \overline{AY}$, (similar to previous line)
- $\overline{AX} \cdot \overline{BY} \leq \overline{BX} \cdot \overline{AY}$, (multiply previous lines)
- $\frac{\overline{AX}}{\overline{AY}} \leq \frac{\overline{BX}}{\overline{BY}}$ (divide previous line by \overline{AY} and \overline{BY})

Furthermore, equality holds in the first line if and only if $A = B$ if and only if equality holds in all the lines.

Now we calculate the distance formula:

$$d(A,B) = 0$$

$$\iff \left| \ln \left(\frac{\overline{AY} \cdot \overline{BX}}{\overline{AX} \cdot \overline{BY}} \right) \right| = 0$$

$$\iff \ln \left(\frac{\overline{AY} \cdot \overline{BX}}{\overline{AX} \cdot \overline{BY}} \right) = 0$$

$$\iff \frac{\overline{AY} \cdot \overline{BX}}{\overline{AX} \cdot \overline{BY}} = 1$$

$$\iff \frac{\overline{AY}}{\overline{AX}} = \frac{\overline{BY}}{\overline{BX}}$$

As above, we saw that this is equivalent to $A = B$.

(b) With A and B any points as described above, let C be any point on the circular arc between A and B. Show that $d(A,B) = d(A,C) + d(C,B)$

Solution
Theorem (SAS Congruence) Given two biangles, if one pair of corresponding angles are equal, and the bases are equal, then the biangles are congruent.

Proof. We assume biangles ... and are given with ... and ... as pictured.

Then we only need to prove

Suppose, for contradiction, that ... and ... are not equal. WLOG assume that $\angle B > \angle D$. We copy angle ... to the point E so that $\angle \ldots E = \angle D$. Note that Point E is in the interior of $\angle \ldots$ as pictured because

In case we need more points labeled, let's all use the same letters:

Since $\angle ABE$ is less than the $\angle ABY$, and since BY is the asymptotic parallel to AX, the line BE intersects AX. Let F be the intersection. Let G be the point on CW with $CG = AF$.

Now we apply SAS to the two triangles $\triangle ABF$ and $\triangle CDG$:

... $= ...$ because ...

... $= ...$ because ...

... $= ...$ because ...

Therefore $\triangle ABF \cong \triangle CDG$. Therefore So $\angle CDG = \angle CDZ$. This implies that the line DG equals the line DZ. This is contradiction because DG is ... and DZ is not

Solution

We assume biangles ... and are given with $\angle A = \angle C$ and $\overline{AB} = \overline{CD}$ as pictured.

Then we only need to prove $\angle B = \angle D$.

Suppose, for contradiction, that $\angle B \neq \angle D$. WLOG assume that $\angle B > \angle D$. We copy angle $\angle D$ to $\angle B$ to create the point E so that $\angle ABE = \angle D$. Note that Point E is in the interior of $\angle B$ as pictured because $\angle ABE < \angle B$.

Let X, Y, W and Z be points labeled as shown.

Since $\angle ABE$ is less than the $\angle ABY$, and since BY is the asymptotic parallel to AX, the line BE intersects AX. Let F be the intersection. Let G be the point on \overline{CW} with $\overline{CG} = \overline{AF}$.

Now we apply SAS to the two triangles $\triangle ABF$ and $\triangle CDG$:

$\overline{AB} = \overline{CD}$

$\angle XAB = \angle WCD$

$\overline{AF} = \overline{CG}$

The “S” in our given SAS

The “A” in our given SAS

definition of G
Therefore $\triangle ABF \cong \triangle CDG$. Therefore

\[
\angle CDG \cong \angle ABF \quad \text{congruent triangles}
\]
\[
= \angle ABE \quad \text{because } \overline{BE} = \overline{BF}
\]
\[
\cong \angle CDZ \quad E \text{ was constructed by copying } \angle D
\]

Since $\angle CDG = \angle CDZ$, the line DG equals the line DZ, which is a contradiction since DG is not parallel to CW and DZ is.