1.7 Exponential Growth and Decay

Comments. This section is designed to give the reader practice with an important family of problems. The main idea is to take a formula such as \(f(t) = Ce^{rt} \), and use it to model some given data. Often the data will described as part of an applied problem.

There are many, many applications of exponential growth and decay: population growth, doubling time, half-life, compound interest, present and future value, to mention a few.

In this section we distinguish between two ways of interpreting percentage change, as shown

<table>
<thead>
<tr>
<th>If (r) is the discrete annual/monthly/hourly/per-time-period percentage change (written as a decimal), then we use</th>
<th>(y = Ca^t) with (a = 1 + r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (r) is the continuous percentage change (written as a decimal) then we use</td>
<td>(y = Ce^{rt})</td>
</tr>
</tbody>
</table>

Example 1. Find \(C \) and \(r \) such that \(f(t) = Ce^{rt} \) goes through the points \((0, 7.3)\) and \((2.9, 17.8)\).

Solution. To solve for \(C \) and \(r \) we need to plug the numbers in. Recall that “\(f(t) \)” represents what we usually call “\(y \)”, and “\(t \)” represents what we usually call “\(x \)”. Thus, the point \((0, 7.3)\) can plugged in as \(y = 0 \) and \(x = 7.3 \):

\[
\begin{align*}
 f(t) &= Ce^{rt} \\
 7.3 &= Ce^{r(0)} & \text{“}y\text{”} = 7.3, \quad \text{“}x\text{”} = 0 \\
 7.3 &= C(1) \\
 C &= 7.3
\end{align*}
\]

Now we plug in \((2.9, 17.8)\), to solve for \(r \). This will take more steps:

\[
\begin{align*}
 f(t) &= 7.3e^{rt} \\
 17.8 &= 7.3e^{r(2.9)} & \text{“}y\text{”} = 17.8, \quad \text{“}x\text{”} = 2.9 \\
 17.8 &= 7.3e^{2.9r} \\
 \frac{17.8}{7.3} &= e^{2.9r} \\
 \ln(17.8/7.3) &= \ln(e^{2.9r}) \\
 \ln(17.8/7.3) &= 2.9r \\
 r &= \frac{\ln(17.8/7.3)}{2.9} \\
 &\approx 0.30735
\end{align*}
\]
Example 2. (Hughes-Hallett, 4e, 1.7#11) A cup of coffee contains 100 mg of caffeine, which leaves the body at a continuous rate of 17% per hour.

(a) Write a formula for the amount, A mg, of caffeine in the body t hours after drinking a cup of coffee.

(b) Find the half-life of caffeine.

Solution. (a) Since the problem says “continuous rate of . . .” we must use the formula $A = Pe^{rt}$. Since caffeine is leaving the body, the amount in the body is decreasing, and so the amount in the body is modelled by a rate of -17%. Finally, we change -17% to a decimal of $r = -0.17$. Putting all this together we get

$$A = 100e^{-0.17t}.$$

(b) “Half-life” means how much time will go by for the amount of caffeine to be cut in half. In other words, we want to solve for t such that

$$50 = 100e^{-0.17t}.$$

This should be familiar:

$$\frac{50}{100} = e^{-0.17t}$$

$$\frac{1}{2} = e^{-0.17t}$$

$$\ln\left(\frac{1}{2}\right) = \ln(e^{-0.17t})$$

$$\ln\left(\frac{1}{2}\right) = -0.17t$$

$$t = \frac{\ln(1/2)}{-0.17} \approx 4.077336356$$