Example 1. Find the derivative of $y = 3.7x^5 - 253x^4 + 10x^2 + 7$; use at most one of the above rules at a time, and indicate which rule this is.

Example 2. We return to Example 1 in Section 2.1 one more time. Recall that the ball had a position given by $p(t) = -4.9t^2 + 3.5t + 2$. Find a formula for the velocity of the ball at time t.

Example 3. Find the derivative of each of the following functions.

(a)
$$y = 3.5x^7$$

(b)
$$y = -2.5x^{-11.5}$$

(c)
$$y = 5x^4 + 7x^3 - 12x^2 + 8x + 9$$

(d)
$$f(x) = 2\sqrt{x}$$

(e)
$$g(t) = 7\sqrt[5]{t}$$

(f)
$$h(z) = \frac{11}{z^3}$$

(g)
$$f(x) = 3.5x^2 + \frac{7}{x^2} - 11\sqrt{x}$$

(a)
$$y = 3.5x^7$$

(b) $y = -2.5x^{-11.5}$
(c) $y = 5x^4 + 7x^3 - 12x^2 + 8x + 9$
(d) $f(x) = 2\sqrt{x}$
(e) $g(t) = 7\sqrt[5]{t}$
(f) $h(z) = \frac{11}{z^3}$
(g) $f(x) = 3.5x^2 + \frac{7}{x^2} - 11\sqrt{x}$
(h) $g(t) = at^2 + bt + c$ (assume that a, b and c are unknown constants).

Example 4. Let $f(x) = x^4 - 4x^2$. Calculate f'(x), f''(x), and graph f(x), f'(x) and f''(x). Compare your results to Examples 2.2, Ex. 3 and 2.4, Ex 1.

Example 5. Find the equation of the tangent line at x = 5 of $f(x) = 2x^2 - x + 3$.