Chapter 4

Using the Derivative

4.1 Local Max and Mins

Definition. Let x = c be in the domain of f(x).

```
x=c is a local maximum if f(x) \leq f(c) for all x near c. (we allow endpoints) x=c \text{ is a local minimum} \quad \text{if } f(x) \geq f(c) \text{ for all } x \text{ near } c. (we allow endpoints)
```

Definition. If x = c is in the domain of f and f'(c) = 0, then we call x = c a **critical point**. We also call the (x, y)-point (c, f(c)) a critical point. We call f(c) the **critical value**.

Theorem 1 (First derivative test). To find the local max/mins of a function f(x) do the following.

- 1. First find the critical points.
- 2. Figure out whether f'(x) is + or on each side of each critical point (four cases, lots of pictures):

f'(x) = +, -		
left of c	right of c	outcome
+	_	$\Rightarrow x = c \text{ local max}$
_	+	$\Rightarrow x = c \text{ local min}$
+	+	$\Rightarrow x = c$ neither
_	_	$\Rightarrow x = c \text{ neither}$

Theorem 2 (Second derivative test). To find the local max/mins of a function f(x) try the following.

- 1. First find the critical points.
- 2. Figure out whether f''(c) is + or (three cases):

f''(c)	outcome
+	local min
_	local max
0 or DNE	test says nothing