SHOW ALL WORK. Only exact values will be accepted.

1. Consider \(f(z) = \frac{3}{(1 + z)(2 - z)} \).

 (a) There are three different domains on which a Maclaurin Series and/or Laurent Series for \(f(z) \) expanded about \(z_0 = 0 \) are valid. State them.

 (b) For each of these domains, find the Maclaurin/Laurent Series for \(f(z) \) expanded about \(z_0 = 0 \). HINT: partial fractions and geometric series will be useful.

2. Consider \(f(z) = \frac{e^z - 1}{z^5} \).

 (a) Find a Laurent Series for \(f(z) \) about \(z_0 = 0 \), stating the domain (open annulus) on which the series is valid.

 (b) What are the principal parts of \(f(z) \) expanded about \(z_0 = 0 \)?

 (c) Find \(\text{Res}_{z=0} f(z) \)

 (d) For the unit circle \(C \), use the above to find \(\int_C f(z) \, dz \).

3. Consider \(f(z) = \frac{z^2}{z^2 - 1} \).

 (a) What is the largest domain about \(z_0 = 1 \) on which a Laurent Series for \(f(z) \) expanded about \(z_0 = 1 \) is valid?

 (b) On the above domain, find the Laurent Series for \(f(z) \) expanded about \(z_0 = 1 \). HINT: Use long division and rewrite \(\frac{1}{z + 1} \) into an algebraically equivalent fraction to write \(\frac{1}{z + 1} \) as a geometric series involving powers of \(z - 1 \).

 (c) What are the principal parts of \(f(z) \) expanded about \(z_0 = 1 \)?

 (d) Find \(\text{Res}_{z=1} f(z) \).

 (e) State/give an example of a positively oriented, simple closed curve \(C \) that is within the domain for the Laurent Series. Then use the above to find \(\int_C f(z) \, dz \).
4. Consider \(f(z) = \frac{\sin z}{(z - \pi)^2} \).

(a) Find a Laurent Series for \(f(z) \) about \(z_0 = \pi \), stating the domain on which the series is valid.

(b) What are the principal parts of \(f(z) \) expanded about \(z_0 = \pi \)?

(c) Find \(\text{Res}_{z=\pi} f(z) \).

(d) State/give an example of a positively oriented, simple closed curve \(C \) that is within the domain for the Laurent Series. Then use the above to find \(\int_C f(z) \, dz \).