§5.2, #2: Part (a) for \(f + g \) was done in class. You need to write up the proof for \(f - g \). For part (c), fill in the blanks of the following proof.

Proof. Let \(f, g \) be differentiable at \(a \) with \(g(a) \neq 0 \). Then

\[
\left(\frac{f}{g} \right)'(a) = \lim_{x \to a} A
\]

\[
= \lim_{x \to a} B \quad \text{(Hint for part B, just simplify } A \text{ getting rid of double fractions)}
\]

\[
= \lim_{x \to a} C \quad \text{(Hint for part C: add and subtract } f(a)g(a) \text{ in numerator)}
\]

\[
= \lim_{x \to a} \left[\frac{g(a)}{g(x)g(a)} D - \frac{f(a)}{g(x)g(a)} E \right] \tag{*}
\]

Since \(g \) is differentiable at \(a \), \(g \) is continuous at \(a \) by Theorem [F]. And, since \(g(a) \neq 0 \), we have \(1/g \) is continuous at \(a \) by Theorem [G]. Thus

\[
\lim_{x \to a} \frac{1}{g(x)} = H.
\]

Since \(f \) and \(g \) are differentiable at \(a \), both

\[
\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \quad \text{and} \quad \lim_{x \to a} \frac{g(x) - g(a)}{x - a}
\]

exist and equal \(f'(a), g'(a) \), respectively. Thus by using limit laws on (*) , we get

\[
\left(\frac{f}{g} \right)'(a) = I,
\]

which proves the Quotient Rule. \(\square \)